Ideal Distributive Law

Distributive Law for Ideals

Given any ideals \(I, J, K\) of a ring \(R\), we have that

\[ I(J + K) = IJ + IK.\]
Proof
\[\begin{align*} I(J + K) &= I \langle J \cup K \rangle \\ &= \langle \{ im : i \in I , m \in J \cup K \} \rangle \\ &= \langle \{ ij : i \in I, j \in J \} \cup \{ ik : i \in I, k \in K \} \rangle \\ &= \langle \langle\{ ij : i \in I, j \in J \}\rangle \cup \langle\{ ik : i \in I, k \in K \} \rangle\rangle \\ &= \langle\{ ij : i \in I, j \in J \}\rangle + \langle\{ ik : i \in I, k \in K \} \rangle \\ &= IJ + IK \end{align*}\]