Ideal Distributive Law Distributive Law for Ideals Given any ideals I,J,K of a ring R, we have thatI(J+K)=IJ+IK. ProofI(J+K)=I⟨J∪K⟩=⟨{im:i∈I,m∈J∪K}⟩=⟨{ij:i∈I,j∈J}∪{ik:i∈I,k∈K}⟩=⟨⟨{ij:i∈I,j∈J}⟩∪⟨{ik:i∈I,k∈K}⟩⟩=⟨{ij:i∈I,j∈J}⟩+⟨{ik:i∈I,k∈K}⟩=IJ+IK