Ideal Distributive Law

Distributive Law for Ideals

Given any ideals I,J,K of a ring R, we have that

I(J+K)=IJ+IK.
Proof
I(J+K)=IJK={im:iI,mJK}={ij:iI,jJ}{ik:iI,kK}={ij:iI,jJ}{ik:iI,kK}={ij:iI,jJ}+{ik:iI,kK}=IJ+IK